

Significant Figures

- Often, precision is limited by the tools available.
- Significant figures include all known digits plus one estimated digit.

- Sig figs are used to help scientists report the most accurate data.
- One should NEVER have to ask where to round a number to in an answer because the rules of significant figures tell you what to do!

Significant Figures (cont.)

- Rules for <u>significant figures</u>
 - Rule 1: Nonzero numbers are always significant.
 - Rule 2: Zeros between nonzero numbers are always significant.
 - Rule 3: All final zeros to the right of the decimal are significant.

- Rule 4: Placeholder zeros are not significant. To remove placeholder zeros, rewrite the number in scientific notation.
- Rule 5: Counting numbers and defined constants have an infinite number of significant figures.

Section 2.3 Assessment

Determine the number of significant figures in the following: 8,200, 723.0, and 0.01.

- **A.** 4, 4, and 3
- **B.** 4, 3, and 3
- **C.** 2, 3, and 1
- D. 2, 4, and 1

Answer the following:

How many sigs figs are there in:

1000?

10.?

10.00?

0.00001050?

Rounding Numbers

- Calculators are not aware of significant figures.
- Answers should not have more significant figures than the original data with the fewest figures, and should be rounded.
- Normally in our labs, I will ask you to report 3 sig figs in your answers, unless told otherwise!

Rounding Numbers (cont.)

- Rules for Rounding (Using Sig Figs)
 - Rule 1: If the digit to the right of the last significant figure is less than 5, do not change the last significant figure.

Resources

— Rule 2: If the digit to the right of the last significant figure is greater than 5, round up to the last significant figure.

Rounding Numbers (cont.)

- Rules for rounding (cont.)
 - Rule 3: If the digits to the right of the last significant figure are a 5 followed by a nonzero digit, round up to the last significant figure.
 - Rule 4: If the digits to the right of the last significant figure are a 5 followed by a 0 or no other number at all, look at the last significant figure. If it is odd, round it up; if it is even, do not round up.

Examples of Rounding w/ Sig Figs

Round to 2 sig figs: $2.35 \times 10^{2} =$

Round to 2 sig figs: $2.45 \times 10^2 =$

Round to 4 sig figs: 10.5660 =

Round to 4 sig figs: 10.5640 =

Rounding Numbers (cont.)

- Addition and subtraction
 - Round numbers so all numbers have the <u>same number of digits to the right</u> of the decimal.
 - Then add/subtract

Examples of Adding Sig Figs

$$1.5.6070 + 2.43 =$$

$$2.0.0023 + 1.230 =$$

$$3.2.030 + 1.34501 =$$

Examples of Subtracting Sig Figs

$$1.5.6070 - 2.43 =$$

$$2.1.230 - 0.0023 =$$

$$3.2.030 - 1.34501 =$$

Multiplication and division

- Perform the calculation first
- Round the answer to the same number of significant figures as the original measurement with the <u>fewest significant</u> figures.

$$1. 2.53 \times 1.20 =$$

$$2.33.00 \times 2.1 =$$

$$3. 105.01 \times 23 =$$

Examples of Dividing Sig Figs

$$1. 2.53 \div 1.20 =$$

$$2.33.00 \div 2.1 =$$

$$3. 105.01 \div 23 =$$

