Interactive Classroom

Glencoe Science

CHEMIS THE

MATTER AND CHANGE

Chapter 4

The Structure of the Atom

Mc Graw Glencoe

Click the mouse button or press the Space Bar to continue.

4.1/4.2 Review

Democritus

Greek philosopher that 1st theorized the existence of the atom

John Dalton

Began modern chemistry movement (atomic theory)

Postulates of Theory:

- 1. Matter is composed of atoms
- 2. Atoms are indivisible and indestructible
- 3. Atoms of each element have specific properties
- 4. Different atoms have different properties
- 5. Different atoms can form compounds of specific proportions
- 6. In chem. rxns, atoms are separated, combined, or rearranged

J.J. Thompson

Identified the electron and determined its charge (-).

Niels Bohr

Theorized the arrangement and behavior of electrons in the atom.

Ernest Rutherford

Determines that an atom is mostly empty space with a tiny positively charged nucleus

Resources

Help

Rutherford/Goldstein

Determined the existence and charge of the proton (+)

James Chadwick

Proved the existence of neutrons in the atom.

4 4

Section 4.3 How Atoms Differ

Objectives

- Explain the role of atomic number in determining the identity of an atom.
- Define an isotope.
- Explain why atomic masses are not whole numbers.
- Calculate the number of electrons, protons, and neutrons in an atom given its mass number and atomic number.

Section 4.3 How Atoms Differ (cont.)

Review Vocabulary

periodic table: a chart that organizes all known elements into a grid of horizontal rows (periods) and vertical columns (groups or families) arranged by increasing atomic number

New Vocabulary

atomic number

atomic mass unit (amu)

isotopes

atomic mass

mass number

MAIN (Idea The number of protons and the mass number define the type of atom.

Atomic Number

- Each element contains a unique positive charge in their nucleus.
- The number of protons in the nucleus of an atom identifies the element and is known as the element's <u>atomic number</u>.

Isotopes and Mass Number

- All atoms of a particular element have the same number of protons and electrons but the number of neutrons in the nucleus can differ.
- Atoms with the same number of protons but different numbers of neutrons are called isotopes.

Resources

Isotopes and Mass Number (cont.)

- The relative abundance of each isotope is usually constant.
- Isotopes containing more neutrons have a greater mass.
- Isotopes have the same chemical behavior.
- The mass number is the sum of the protons and neutrons in the nucleus.

Isotopes and Mass Number (cont.)

	Potassium-39	Potassium-40	Potassium-41
Protons	19	19	19
Neutrons	20	21	22
Electrons	19	19	19

4

Mass of Atoms

- One <u>atomic mass unit</u> (amu) is defined as 1/12th the mass of a carbon-12 atom.
- One amu is nearly, but not exactly, equal to one proton and one neutron.

Table 4.4	Masses of Subatomic Particles	
Particle	Mass (amu)	
Electron	0.000549	
Proton	1.007276	
Neutron	1.008665	

Mass of Atoms (cont.)

Chapter Menu

The atomic mass of an element is the weighted average mass of the isotopes of that element.

Calculate the Weighted Average Atomic Mass of Chlorine

Weighted average atomic mass of chlorine = (26.496 amu + 8.957 amu) = 35.453 amu

4

Section 4.3 Assessment

An unknown element has 19 protons, 19 electrons, and 3 isotopes with 20, 21 and 22 neutrons. What is the element's atomic number?

- **A.** 38
- **B.** 40
- **C.** 19
 - D. unable to determine

Section 4.3 Assessment

Elements with the same number of protons and differing numbers of neutrons are known as what?

- isotopes
 - **B.** radioactive
 - C. abundant
 - D. ions

