Interactive Classroom

Glencoe Science

CHEMIS THE

MATTER AND CHANGE

Chapter 4

The Structure of the Atom

Mc Graw Glencoe

Click the mouse button or press the Space Bar to continue.

Section 4.4 Unstable Nuclei and Radioactive Decay

Objectives

- Explain the relationship between unstable nuclei and radioactive decay.
- Characterize alpha, beta, and gamma radiation in terms of mass and charge.

Review Vocabulary

element: a pure substance that cannot be broken down into simpler substances by physical or chemical means

Chapter Outline

Resources

Help

Section 4.4 Unstable Nuclei and Radioactive Decay (cont.)

New Vocabulary

radioactivity alpha particle

nuclear equation radiation

nuclear reaction beta radiation

beta particle radioactive decay

alpha radiation gamma rays

MAIN Idea Unstable atoms emit radiation to gain stability.

Radioactivity

- Nuclear reactions can change one element into another element.
- In the late 1890s, scientists noticed some substances spontaneously emitted radiation, a process they called radioactivity.
- The rays and particles emitted are called radiation.
- A reaction that involves a change in an atom's nucleus is called a nuclear reaction.

CHAPTER 4

Radioactive Decay

- Unstable nuclei lose energy by emitting radiation in a spontaneous process called <u>radioactive decay</u>.
- Unstable radioactive elements undergo radioactive decay thus forming stable nonradioactive elements.

- Alpha radiation is made up of positively charged particles called alpha particles.
- Each alpha particle contains two protons and two neutrons and has a 2+ charge.

Radioactive Decay (cont.)

 The figure shown below is a <u>nuclear</u> <u>equation</u> showing the radioactive decay of radium-226 to radon-222.

$$^{226}_{88}$$
Ra $\rightarrow ^{222}_{86}$ Rn + α
radium-226 radon-222 alpha particle

The mass is conserved in nuclear equations.

Section 2

Radioactive Decay (cont.)

- Beta radiation is radiation that has a negative charge and emits beta particles.
- Each beta particle is an electron with a 1 charge.

$$^{14}_{6}C \rightarrow ^{14}_{7}N + \beta$$

carbon-14 nitrogen-14 beta particle

CHAPTER

- Gamma rays are high-energy radiation with no mass and are neutral.
- Gamma rays account for most of the energy lost during radioactive decay.

Table 4.5	Characteristics of Radiation		
	Alpha	Beta	Gamma
Symbol	$^{ ext{4}}_{ ext{2}}$ He or $lpha$	e $^-$ or β	γ
Mass (amu)	4	<u>1</u> 1840	0
Mass (kg)	6.65×10^{-27}	9.11×10^{-31}	0
Charge	2+	1-	0

4

- Atoms that contain too many or two few neutrons are unstable and lose energy through radioactive decay to form a stable nucleus.
- Few exist in nature—most have already decayed to stable forms.

Section 4.4 Assessment

A reaction that changes one element into another is called what?

- A. chemical reaction
- **B.** beta radiation
- c. nuclear reaction
 - D. physical reaction

Chapter Menu

Section 4.4 Assessment

Why are radioactive elements rare in nature?

- A. They do no occur on Earth.
- Most have already decayed to a stable form.
- **C.** They take a long time to form.
- **D.** They are too hard to detect.

