**Interactive Classroom** 

**Glencoe Science** 

# CHEMIS HIS

MATTER AND CHANGE

Chapter 10

The Mole

Mc Graw Glencoe

Click the mouse button or press the Space Bar to continue.



# **Section 10.1 Measuring Matter**

## **Objectives**

- **Explain** how a mole is used to indirectly count the number of particles of matter.
- Relate the mole to a common everyday counting unit.
- Convert between moles and number of representative particles.

# **Review Vocabulary**

molecule: two or more atoms that covalently bond together to form a unit

## **New Vocabulary**

mole

Avogadro's number



MAIN Idea Chemists use the mole to count atoms, molecules, ions, and formula units.



# **Counting Particles**

- Chemists need a convenient method for accurately counting the number of atoms, molecules, or formula units of a substance.
- The mole is the SI base unit used to measure the amount of a substance.
- 1 mole is the amount of atoms in 12 g of pure carbon-12, or  $6.02 \times 10^{23}$  atoms.
- The number is called **Avogadro's number**.



# Chapter Menu

# **Converting Between Moles and Particles**

- Conversion factors must be used.
- Moles to particles

Conversion factor 
$$\frac{6.02 \times 10^{23} \text{ particles}}{1 \text{ mol}}$$

Number of molecules in 3.50 mol of sucrose

$$3.50 \; \underline{\text{mol sucrose}} \times \frac{6.02 \times 10^{23} \; \text{molecules}}{1 \; \underline{\text{mol sucrose}}} = 2.11 \times 10^{24} \; \underline{\text{molecules}}$$



# Converting Between Moles and Particles (cont.)

Particles to moles

**Chapter Menu** 

 Use the inverse of Avogadro's number as the conversion factor.

Number of representative particles 
$$\times \frac{1 \text{ mol}}{6.02 \times 10^{23} \text{ particles}}$$

$$2.11 \times 10^{24} \frac{\text{molecules sucrose}}{\text{sucrose}} \times \frac{1 \text{ mol sucrose}}{6.02 \times 10^{23} \text{ molecules}} = 3.50 \text{ mol sucrose}$$



How many moles are there in 3.02 x 10<sup>22</sup> atoms of magnesium?



How many atoms are in 0.750 moles of zinc?



 How many moles are there in 1.20 x 10 <sup>25</sup> atoms of phosphorus?



How many molecules are there in 0.400 moles of Dinitrogen pentaoxide?



## **Section 10.1 Assessment**



#### What does the mole measure?

- A. mass of a substance
- B) amount of a substance
- C. volume of a gas
- D. density of a gas





### Section 10.1 Assessment



What is the conversion factor for determining the number of moles of a substance from a known number of particles?

6.02×10<sup>23</sup> particles

1 mol

1 mol 6.02×10<sup>23</sup> particles

C. 1 particle  $\times$  6.02  $\times$  10<sup>23</sup>

**D.** 1 mol  $\times$  6.02  $\times$  10<sup>23</sup> particles



