

Section 10.3 Moles of Compounds

Objectives

- Recognize the mole relationships shown by a chemical formula.
- Calculate the molar mass of a compound.
- Convert between the number of moles and mass of a compound.
- Apply conversion factors to determine the number of atoms or ions in a known mass of a compound.

Review Vocabulary

representative particle: an atom, molecule, formula unit, or ion

Chemical Formulas and the Mole

The molar mass of a compound can be calculated from its chemical formula and can be used to convert from mass to moles of that compound.

- Chemical formulas indicate the numbers and types of atoms contained in one unit of the compound.
- One mole of CCI₂F₂ contains one mole of C atoms, two moles of Cl atoms, and two moles of F atoms.

Resources

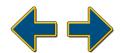
The Molar Mass of Compounds

- The molar mass of a compound equals the molar mass of each element, multiplied by the moles of that element in the chemical formula, added together.
- The molar mass of a compound demonstrates the law of conservation of mass.

Chapter Menu

Converting Moles of a Compound to Mass

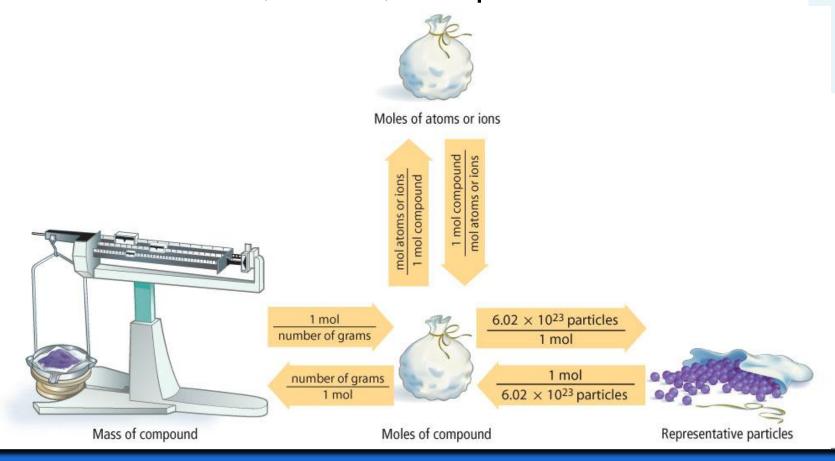
- For elements, the conversion factor is the molar mass of the compound.
- The procedure is the same for compounds, except that you must first calculate the molar mass of the compound.


Ex)
$$H_2O = 2 \times 1.0 + 1 \times 16.0 = 18.0 \text{ g/mol}$$

Converting the Mass of a Compound to Moles

 The conversion factor is the inverse of the molar mass of the compound.

5.50 g compound
$$\times \frac{1 \text{ mol compound}}{185.0 \text{ g compound}} = 0.0297 \text{ mol compound}$$


Converting the Mass of a Compound to Number of Particles

- Convert mass to moles of compound with the inverse of molar mass.
- Convert moles to particles with Avogadro's number.

Converting the Mass of a Compound to **Number of Particles (cont.)**

This figure summarizes the conversions between mass, moles, and particles.

 How many moles of Oxygen are in 1 mol of H₂O?

Hydrogen?

 What is the molar mass of a molecule of NO₃-? Round each to the nearest 10th

What is the mass of 3.25 moles of NO₃⁻?

 If the molar mass of CCl₄ is 153.8 g/mol, how many grams are there in 5.2 moles of CCl₄?

Section 10.3 Assessment

How many moles of OH^- ions are in 2.50 moles of $Ca(OH)_2$?

- **A.** 2.00
- **B.** 2.50
- **C.** 4.00
- **D.** 5.00

Section 10.3 Assessment

How many particles of Mg are in 10 moles of MgBr₂?

- **A.** 6.02×10^{23}
- (B.) 6.02×10^{24}
 - **C.** 1.20×10^{24}
 - **D.** 1.20×10^{25}

