Interactive Classroom

Glencoe Science

CHEMIS TRUE

MATTER AND CHANGE

Chapter 8

Covalent Bonding

Mc Graw Glencoe

Click the mouse button or press the Space Bar to continue.

Section 8.1 The Covalent Bond

Objectives

Chapter Menu

- Apply the octet rule to atoms that form covalent bonds.
- **Describe** the formation of single, double, and triple covalent bonds.
- Contrast sigma and pi bonds.
- Relate the strength of a covalent bond to its bond length and bond dissociation energy.

Review Vocabulary

chemical bond: the force that holds two atoms together

Section 8.1 The Covalent Bond (cont.)

New Vocabulary

covalent bond pi bond

molecule endothermic reaction

exothermic reaction Lewis structure

sigma bond

MAIN (Idea Atoms gain stability when they share electrons and form covalent bonds.

Why do atoms bond?

- Atoms gain stability when they share electrons and form covalent bonds.
- Lower energy states make an atom more stable.
- Gaining or losing electrons makes atoms more stable by forming ions with noble-gas electron configurations.
- Sharing valence electrons with other atoms also results in noble-gas electron configurations.

CHAPTE 8

Why do atoms bond? (cont.)

- Atoms in non-ionic compounds share electrons.
- The chemical bond that results from sharing electrons is a covalent bond.
- A molecule is formed when two or more atoms bond to form a covalent compound.

Why do atoms bond? (cont.)

 Diatomic molecules (H₂, F₂ for example) exist because two-atom molecules are more stable than single atoms.

Force of repulsion

Why do atoms bond? (cont.)

 The most stable arrangement of atoms exists at the point of maximum net attraction, where the atoms bond covalently and form a molecule.

Single Covalent Bonds

- When only one pair of electrons is shared, the result is a single covalent bond.
- The figure shows two hydrogen atoms forming a hydrogen molecule with a single covalent bond, resulting in an electron configuration like helium.

Chapter Ch

Single Covalent Bonds (cont.)

- In a <u>Lewis structure</u> dots or a line are used to symbolize a single covalent bond.
- The halogens—the group 17 elements—have 7 valence electrons and form single covalent bonds with atoms of other non-metals.
- The Lewis dot structure is made using ht symbol of the element surrounded by the valence electrons.

Chapter Menu

Single Covalent Bonds (cont.)

- Atoms in group 16 can share two electrons and form two covalent bonds.
- Water is formed from one oxygen with two hydrogen atoms covalently bonded to it.

Single Covalent Bonds (cont.)

 Atoms in group 15 form three single covalent bonds, such as in ammonia.

Single Covalent Bonds (cont.)

 Atoms of group 14 elements form four single covalent bonds, such as in methane.

Single Covalent Bonds (cont.)

- **Sigma bonds** are single covalent bonds.
- Sigma bonds occur when the pair of shared electrons is in an area centered between the two atoms.

CHAPT 8

Multiple Covalent Bonds

 Double bonds form when two pairs of electrons are shared between two atoms.

 Triple bonds form when three pairs of electrons are shared between two atoms.

CHAPTER 8

Multiple Covalent Bonds (cont.)

- A multiple covalent bond consists of one sigma bond and at least one pi bond.
- The <u>pi bond</u> is formed when parallel orbitals overlap and share electrons.

Resources

The Strength of Covalent Bonds

- The strength depends on the distance between the two nuclei, or bond length.
- As length increases, strength decreases.

Table 8.1	Covalent Bond Type and Bond Length	
Molecule	Bond Type	Bond Length
F ₂	single covalent	$1.43 \times 10^{-10} \mathrm{m}$
02	double covalent	$1.21 \times 10^{-10} \mathrm{m}$
N ₂	triple covalent	$1.10 \times 10^{-10} \mathrm{m}$

The Strength of Covalent Bonds (cont.)

 The amount of energy required to break a bond is called the bond dissociation energy.

Resources

 The shorter the bond length, the greater the energy required to break it.

Table 8.2	Bond-Dissociation Energy	
Molecule	Bond-Dissociation Energy	
F ₂	159 kJ/mol	
02	498 kJ/mol	
N_2	945 kJ/mol	

The Strength of Covalent Bonds (cont.)

- An <u>endothermic reaction</u> is one where a greater amount of energy is required to break a bond in reactants than is released when the new bonds form in the products.
- An <u>exothermic reaction</u> is one where more energy is released than is required to break the bonds in the initial reactants.

Section 8.1 Assessment

What does a triple bond consists of?

- A. three sigma bonds
- B. three pi bonds
- C. two sigma bonds and one pi bond
- two pi bonds and one sigma bond

Section 8.1 Assessment

Covalent bonds are different from ionic bonds because:

- A. atoms in a covalent bond lose electrons to another atom
- B. atoms in a covalent bond do not have noble-gas electron configurations
- atoms in a covalent bond share electrons with another atom
 - D. atoms in covalent bonds gain electrons from another atom

