Dehydration Synthesis vs Hydrolysis:

* All of the organic compounds we will study are examples of polymers.

A <u>polymer</u> is a large chemical compound composed of smaller repeating units --- over & over & over again. Like a chain is a repeating pattern of interlocking chain links.

<u>Dehydration synthesis</u> is the chemical process that connects the smaller subunits to <u>form large organic compounds</u>. This process requires the <u>removal of 1 water molecule</u> from the combination of each "link".

- * Synthesis means to build.
- * Dehydration refers to the fact that <u>water is lost</u> during the chemical process that bonds the subunits together. We will "see" this in a minute when we get more specific.

<u>Hydrolysis</u> is the process that <u>breaks</u> large organic compounds into their smaller subunits. It is the opposite of dehydration synthesis.

- * Hydro = water added
- * lysis = to be split

In Hydrolysis, water is added and the large compounds are split. The process of hydrolysis is involved in digestion --- when food is broken down into nutrients.

So, to summarize:

PROCESS	STARTS WITH	ENDS WITH	EXAMPLE
dehydration synthesis	small molecules (subunits)	large molecules & water	
hydrolysis	water & large molecules	small molecules (subunits)	digestion

Hydrolysis and Dehydration Synthesis Review

- 1. What does dehydration synthesis mean?
- 2. What does Hydrolysis mean?
- 3. Use the concept of dehydration synthesis to assemble the following molecules into a compound.

ala a Alanin asn n Asparagin
$$+$$
 H_2O

4. Use the concept of hydrolysis to break down the following compounds into monomers.

d.