Name	
Scientific Notation Notes	Date Hour
All too often in science we have to collect data to support an investigation that look like	e this:
A) 1 mole = 602,000,000,000,000,000,000 atoms (yup, that's 21 zeros after the #!!!)	
<u>Or</u>	
B) 1 atom = 0.0000000000000000000000000000000000	
Scientific notation is a <u>shorter</u> way to write <u>very large</u> (like in A above) or <u>very small</u> above).	number (like in B
TO CONVERT A NUMBER INTO SCIENTIFIC NOTATION:	
Step 1 move the decimals left or right until it creates a number between 1 and 9.	
Ex) 602,000,000,000,000,000,000 \rightarrow move the decimal to the left to get <u>6.0</u>	<u>)2</u>
Step 2 Now count the number of places you moved the decimal	
Ex) in our case above it was <u>23</u> .	
Step 3 Write the number found in step one multiplied by ten	
Ex) in our case it becomes 6.02 x 10	
Step 4 Write the number of places you moved the decimal in step 2 as an exponent or step 3.	າ your answer from
Ex) in our case it becomes <u>6.02 x 10²³ atoms</u>	
EXAMPLE 2: 3,346,000,000. =	
The decimal moved 9 places # between 1 & 10 power of ten Add zeros as needed for place holders.	
Answer = <u>3.346 x 10⁹</u>	
* Positive exponents are <u>large numbers</u> , negative exponents are <u>small numbers</u> !!!	
EXAMPLE 3: 0.000000000736 =	
Answer = 7.36 x 10 ⁻¹¹	

Name ____

	Traine		
TO CONVERT SCIENTIFIC NOTATION INTO STANDARD FORM	(Writing it th	Date e long way):	_Hour_
Step 1 Look at the decimal value of the number given and move th exponent) or right (if positive exponent) until you run out of spaces.	e <u>move the de</u>	ecimals left (if n	<u>egative</u>
Ex) 6.5 x 10^{-9} move the decimal to the left to get <u>.65</u>			
Step 2 Now determine the number of remaining decimal places from	n the exponer	nt	
Ex) in our case above it was 8 (9 minus 1)			
Step 3 Now continue moving the decimal by adding zeros in the co	orrect direction	n (this case to th	ne left).
Ex) in our case it becomes <u>0.000000065</u>			
•			
EXAMPLE 2: 1.312 x 10 ⁶ = The decimal moved 6 places to the RIGHT. Add zeros as needed for places	ace holders.		
Answer = $1,312,000$			
EXAMPLE 3: 7.809 x 10 ⁻⁶ =			
Try These:			
Write in Scientific Notation			
890,000,090 =			
.000067 =			
7,060,790 =			
Write in Standard Notation			
$8.3 \times 10^5 = $			
$9.43 \times 10^{-3} = $			
$7.002 \times 10^{-10} = $			

Name ____